

 Hide navigation sidebar

 Hide table of contents sidebar

 Toggle site navigation sidebar

 Pillow (PIL Fork) 10.3.0.dev0 documentation

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

 Pillow (PIL Fork) 10.3.0.dev0 documentation

 	InstallationToggle navigation of Installation
	Basic Installation
	Python Support
	Platform Support
	Building From Source
	Old Versions

	HandbookToggle navigation of Handbook
	Overview
	Tutorial
	Concepts
	AppendicesToggle navigation of Appendices
	Image file formats
	Text anchors
	Writing Your Own Image Plugin
	Decoders
	Writing Your Own File Codec in C
	Writing Your Own File Codec in Python

	ReferenceToggle navigation of Reference
	Image Module
	ImageChops (“Channel Operations”) Module
	ImageCms Module
	ImageColor Module
	ImageDraw Module
	ImageEnhance Module
	ImageFile Module
	ImageFilter Module
	ImageFont Module
	ImageGrab Module
	ImageMath Module
	ImageMorph Module
	ImageOps Module
	ImagePalette Module
	ImagePath Module
	ImageQt Module
	ImageSequence Module
	ImageShow Module
	ImageStat Module
	ImageTk Module
	ImageTransform Module
	ImageWin Module (Windows-only)
	ExifTags Module
	TiffTags Module
	JpegPresets Module
	PSDraw Module
	PixelAccess Class
	PyAccess Module
	features Module
	PIL Package (autodoc of remaining modules)
	Plugin reference
	Internal ReferenceToggle navigation of Internal Reference
	File Handling in Pillow
	Limits
	Block Allocator
	Internal Modules
	C Extension debugging on Linux, with gbd/valgrind.

	Porting
	About
	Release NotesToggle navigation of Release Notes
	10.3.0
	10.2.0
	10.1.0
	10.0.1
	10.0.0
	9.5.0
	9.4.0
	9.3.0
	9.2.0
	9.1.1
	9.1.0
	9.0.1
	9.0.0
	8.4.0
	8.3.2
	8.3.1
	8.3.0
	8.2.0
	8.1.2
	8.1.1
	8.1.0
	8.0.1
	8.0.0
	7.2.0
	7.1.2
	7.1.1
	7.1.0
	7.0.0
	6.2.2
	6.2.1
	6.2.0
	6.1.0
	6.0.0
	5.4.1
	5.4.0
	5.3.0
	5.2.0
	5.1.0
	5.0.0
	4.3.0
	4.2.1
	4.2.0
	4.1.1
	4.1.0
	4.0.0
	3.4.0
	3.3.2
	3.3.0
	3.2.0
	3.1.2
	3.1.1
	3.1.0
	3.0.0
	2.8.0
	2.7.0
	Versioning

	Deprecations and removals

 v: latest

 	Versions
	latest
	stable

 	Downloads
	pdf

 	On Read the Docs
	
 Project Home

	
 Builds

 Back to top

 Edit this page

 Toggle Light / Dark / Auto color theme

 Toggle table of contents sidebar

Image file formats#

The Python Imaging Library supports a wide variety of raster file formats.
Over 30 different file formats can be identified and read by the library.
Write support is less extensive, but most common interchange and presentation
formats are supported.

The open() function identifies files from their
contents, not their names, but the save() method
looks at the name to determine which format to use, unless the format is given
explicitly.

When an image is opened from a file, only that instance of the image is considered to
have the format. Copies of the image will contain data loaded from the file, but not
the file itself, meaning that it can no longer be considered to be in the original
format. So if copy() is called on an image, or another method
internally creates a copy of the image, then any methods or attributes specific to the
format will no longer be present. The fp (file pointer) attribute will no longer be
present, and the format attribute will be None.

Fully supported formats#

BLP#

BLP is the Blizzard Mipmap Format, a texture format used in World of
Warcraft. Pillow supports reading JPEG Compressed or raw BLP1
images, and all types of BLP2 images.

Saving#

Pillow supports writing BLP images. The save() method
can take the following keyword arguments:

	blp_version
	If present and set to “BLP1”, images will be saved as BLP1. Otherwise, images
will be saved as BLP2.

BMP#

Pillow reads and writes Windows and OS/2 BMP files containing 1, L, P,
or RGB data. 16-colour images are read as P images.
Support for reading 8-bit run-length encoding was added in Pillow 9.1.0.
Support for reading 4-bit run-length encoding was added in Pillow 9.3.0.

Opening#

The open() method sets the following
info properties:

	compression
	Set to 1 if the file is a 256-color run-length encoded image.
Set to 2 if the file is a 16-color run-length encoded image.

DDS#

DDS is a popular container texture format used in video games and natively supported
by DirectX.

DXT1 and DXT5 pixel formats can be read, only in RGBA mode.

New in version 3.4.0: DXT3 images can be read in RGB mode and DX10 images can be read in
RGB and RGBA mode.

New in version 6.0.0: Uncompressed RGBA images can be read.

New in version 8.3.0: BC5S images can be opened in RGB mode, and uncompressed RGB images
can be read. Uncompressed data can also be saved to image files.

New in version 9.3.0: ATI1 images can be opened in L mode and ATI2 images can be opened in
RGB mode.

New in version 9.4.0: Uncompressed L (“luminance”) and LA images can be opened and saved.

New in version 10.1.0: BC5U can be read in RGB mode, and 8-bit color indexed images can be read
in P mode.

DIB#

Pillow reads and writes DIB files. DIB files are similar to BMP files, so see
above for more information.

New in version 6.0.0.

EPS#

Pillow identifies EPS files containing image data, and can read files that
contain embedded raster images (ImageData descriptors). If Ghostscript is
available, other EPS files can be read as well. The EPS driver can also write
EPS images. The EPS driver can read EPS images in L, LAB, RGB and
CMYK mode, but Ghostscript may convert the images to RGB mode rather
than leaving them in the original color space. The EPS driver can write images
in L, RGB and CMYK modes.

Loading#

To use Ghostscript, Pillow searches for the “gs” executable. On Windows, it
also searches for “gswin32c” and “gswin64c”. To customise this behaviour,
EpsImagePlugin.gs_binary = "gswin64" will set the name of the executable to
use. EpsImagePlugin.gs_binary = False will prevent Ghostscript use.

If Ghostscript is available, you can call the load()
method with the following parameters to affect how Ghostscript renders the EPS.

	scale
	Affects the scale of the resultant rasterized image. If the EPS suggests
that the image be rendered at 100px x 100px, setting this parameter to
2 will make the Ghostscript render a 200px x 200px image instead. The
relative position of the bounding box is maintained:

im = Image.open(...)
im.size # (100,100)
im.load(scale=2)
im.size # (200,200)

	transparency
	If true, generates an RGBA image with a transparent background, instead of
the default behaviour of an RGB image with a white background.

GIF#

Pillow reads GIF87a and GIF89a versions of the GIF file format. The library
writes files in GIF87a by default, unless GIF89a features are used or GIF89a is
already in use. Files are written with LZW encoding.

GIF files are initially read as grayscale (L) or palette mode (P)
images. Seeking to later frames in a P image will change the image to
RGB (or RGBA if the first frame had transparency).

P mode images are changed to RGB because each frame of a GIF may contain
its own individual palette of up to 256 colors. When a new frame is placed onto a
previous frame, those colors may combine to exceed the P mode limit of 256
colors. Instead, the image is converted to RGB handle this.

If you would prefer the first P image frame to be RGB as well, so that
every P frame is converted to RGB or RGBA mode, there is a setting
available:

from PIL import GifImagePlugin
GifImagePlugin.LOADING_STRATEGY = GifImagePlugin.LoadingStrategy.RGB_ALWAYS

GIF frames do not always contain individual palettes however. If there is only
a global palette, then all of the colors can fit within P mode. If you would
prefer the frames to be kept as P in that case, there is also a setting
available:

from PIL import GifImagePlugin
GifImagePlugin.LOADING_STRATEGY = GifImagePlugin.LoadingStrategy.RGB_AFTER_DIFFERENT_PALETTE_ONLY

To restore the default behavior, where P mode images are only converted to
RGB or RGBA after the first frame:

from PIL import GifImagePlugin
GifImagePlugin.LOADING_STRATEGY = GifImagePlugin.LoadingStrategy.RGB_AFTER_FIRST

Opening#

The open() method sets the following
info properties:

	background
	Default background color (a palette color index).

	transparency
	Transparency color index. This key is omitted if the image is not
transparent.

	version
	Version (either GIF87a or GIF89a).

	duration
	May not be present. The time to display the current frame
of the GIF, in milliseconds.

	loop
	May not be present. The number of times the GIF should loop. 0 means that
it will loop forever.

	comment
	May not be present. A comment about the image. This is the last comment found
before the current frame’s image.

	extension
	May not be present. Contains application specific information.

Reading sequences#

The GIF loader supports the seek() and
tell() methods. You can combine these methods
to seek to the next frame (im.seek(im.tell() + 1)).

im.seek() raises an EOFError if you try to seek after the last frame.

Saving#

When calling save() to write a GIF file, the
following options are available:

im.save(out, save_all=True, append_images=[im1, im2, ...])

	save_all
	If present and true, all frames of the image will be saved. If
not, then only the first frame of a multiframe image will be saved.

	append_images
	A list of images to append as additional frames. Each of the
images in the list can be single or multiframe images.
This is currently supported for GIF, PDF, PNG, TIFF, and WebP.

It is also supported for ICO and ICNS. If images are passed in of relevant
sizes, they will be used instead of scaling down the main image.

	include_color_table
	Whether or not to include local color table.

	interlace
	Whether or not the image is interlaced. By default, it is, unless the image
is less than 16 pixels in width or height.

	disposal
	Indicates the way in which the graphic is to be treated after being displayed.

	0 - No disposal specified.

	1 - Do not dispose.

	2 - Restore to background color.

	3 - Restore to previous content.

Pass a single integer for a constant disposal, or a list or tuple
to set the disposal for each frame separately.

	palette
	Use the specified palette for the saved image. The palette should
be a bytes or bytearray object containing the palette entries in
RGBRGB… form. It should be no more than 768 bytes. Alternately,
the palette can be passed in as an
PIL.ImagePalette.ImagePalette object.

	optimize
	Whether to attempt to compress the palette by eliminating unused colors
(this is only useful if the palette can be compressed to the next smaller
power of 2 elements) and whether to mark all pixels that are not new in the
next frame as transparent.

This is attempted by default, unless a palette is specified as an option or
as part of the first image’s info dictionary.

Note that if the image you are saving comes from an existing GIF, it may have
the following properties in its info dictionary.
For these options, if you do not pass them in, they will default to
their info values.

	transparency
	Transparency color index.

	duration
	The display duration of each frame of the multiframe gif, in
milliseconds. Pass a single integer for a constant duration, or a
list or tuple to set the duration for each frame separately.

	loop
	Integer number of times the GIF should loop. 0 means that it will loop
forever. If omitted or None, the image will not loop.

	comment
	A comment about the image.

Reading local images#

The GIF loader creates an image memory the same size as the GIF file’s logical
screen size, and pastes the actual pixel data (the local image) into this
image. If you only want the actual pixel rectangle, you can crop the image:

im = Image.open(...)

if im.tile[0][0] == "gif":
 # only read the first "local image" from this GIF file
 box = im.tile[0][1]
 im = im.crop(box)

ICNS#

Pillow reads and writes macOS .icns files. By default, the
largest available icon is read, though you can override this by setting the
size property before calling
load(). The open() method
sets the following info property:

Note

Prior to version 8.3.0, Pillow could only write ICNS files on macOS.

	sizes
	A list of supported sizes found in this icon file; these are a
3-tuple, (width, height, scale), where scale is 2 for a retina
icon and 1 for a standard icon. You are permitted to use this 3-tuple
format for the size property if you set it
before calling load(); after loading, the size
will be reset to a 2-tuple containing pixel dimensions (so, e.g. if you
ask for (512, 512, 2), the final value of
size will be (1024, 1024)).

Saving#

The save() method can take the following keyword arguments:

	append_images
	A list of images to replace the scaled down versions of the image.
The order of the images does not matter, as their use is determined by
the size of each image.

New in version 5.1.0.

ICO#

ICO is used to store icons on Windows. The largest available icon is read.

Saving#

The save() method supports the following options:

	sizes
	A list of sizes including in this ico file; these are a 2-tuple,
(width, height); Default to [(16, 16), (24, 24), (32, 32), (48, 48),
(64, 64), (128, 128), (256, 256)]. Any sizes bigger than the original
size or 256 will be ignored.

The save() method can take the following keyword arguments:

	append_images
	A list of images to replace the scaled down versions of the image.
The order of the images does not matter, as their use is determined by
the size of each image.

New in version 8.1.0.

	bitmap_format
	By default, the image data will be saved in PNG format. With a bitmap format of
“bmp”, image data will be saved in BMP format instead.

New in version 8.3.0.

IM#

IM is a format used by LabEye and other applications based on the IFUNC image
processing library. The library reads and writes most uncompressed interchange
versions of this format.

IM is the only format that can store all internal Pillow formats.

JPEG#

Pillow reads JPEG, JFIF, and Adobe JPEG files containing L, RGB, or
CMYK data. It writes standard and progressive JFIF files.

Using the draft() method, you can speed things up by
converting RGB images to L, and resize images to 1/2, 1/4 or 1/8 of
their original size while loading them.

By default Pillow doesn’t allow loading of truncated JPEG files, set
ImageFile.LOAD_TRUNCATED_IMAGES to override this.

Opening#

The open() method may set the following
info properties if available:

	jfif
	JFIF application marker found. If the file is not a JFIF file, this key is
not present.

	jfif_version
	A tuple representing the jfif version, (major version, minor version).

	jfif_density
	A tuple representing the pixel density of the image, in units specified
by jfif_unit.

	jfif_unit
	Units for the jfif_density:

	0 - No Units

	1 - Pixels per Inch

	2 - Pixels per Centimeter

	dpi
	A tuple representing the reported pixel density in pixels per inch, if
the file is a jfif file and the units are in inches.

	adobe
	Adobe application marker found. If the file is not an Adobe JPEG file, this
key is not present.

	adobe_transform
	Vendor Specific Tag.

	progression
	Indicates that this is a progressive JPEG file.

	icc_profile
	The ICC color profile for the image.

	exif
	Raw EXIF data from the image.

	comment
	A comment about the image.

New in version 7.1.0.

Saving#

The save() method supports the following options:

	quality
	The image quality, on a scale from 0 (worst) to 95 (best), or the string
keep. The default is 75. Values above 95 should be avoided; 100 disables
portions of the JPEG compression algorithm, and results in large files with
hardly any gain in image quality. The value keep is only valid for JPEG
files and will retain the original image quality level, subsampling, and
qtables.

	optimize
	If present and true, indicates that the encoder should make an extra pass
over the image in order to select optimal encoder settings.

	progressive
	If present and true, indicates that this image should be stored as a
progressive JPEG file.

	dpi
	A tuple of integers representing the pixel density, (x,y).

	icc_profile
	If present and true, the image is stored with the provided ICC profile.
If this parameter is not provided, the image will be saved with no profile
attached. To preserve the existing profile:

im.save(filename, 'jpeg', icc_profile=im.info.get('icc_profile'))

	exif
	If present, the image will be stored with the provided raw EXIF data.

	keep_rgb
	By default, libjpeg converts images with an RGB color space to YCbCr.
If this option is present and true, those images will be stored as RGB
instead.

When this option is enabled, attempting to chroma-subsample RGB images
with the subsampling option will raise an OSError.

New in version 10.2.0.

	subsampling
	If present, sets the subsampling for the encoder.

	keep: Only valid for JPEG files, will retain the original image setting.

	4:4:4, 4:2:2, 4:2:0: Specific sampling values

	0: equivalent to 4:4:4

	1: equivalent to 4:2:2

	2: equivalent to 4:2:0

If absent, the setting will be determined by libjpeg or libjpeg-turbo.

	restart_marker_blocks
	If present, emit a restart marker whenever the specified number of MCU
blocks has been produced.

New in version 10.2.0.

	restart_marker_rows
	If present, emit a restart marker whenever the specified number of MCU
rows has been produced.

New in version 10.2.0.

	qtables
	If present, sets the qtables for the encoder. This is listed as an
advanced option for wizards in the JPEG documentation. Use with
caution. qtables can be one of several types of values:

	a string, naming a preset, e.g. keep, web_low, or web_high

	a list, tuple, or dictionary (with integer keys =
range(len(keys))) of lists of 64 integers. There must be
between 2 and 4 tables.

New in version 2.5.0.

	streamtype
	Allows storing images without quantization and Huffman tables, or with
these tables but without image data. This is useful for container formats
or network protocols that handle tables separately and share them between
images.

	0 (default): interchange datastream, with tables and image data

	1: abbreviated table specification (tables-only) datastream

New in version 10.2.0.

	2: abbreviated image (image-only) datastream

	comment
	A comment about the image.

New in version 9.4.0.

Note

To enable JPEG support, you need to build and install the IJG JPEG library
before building the Python Imaging Library. See the distribution README for
details.

JPEG 2000#

New in version 2.4.0.

Pillow reads and writes JPEG 2000 files containing L, LA, RGB,
RGBA, or YCbCr data. When reading, YCbCr data is converted to
RGB or RGBA depending on whether or not there is an alpha channel.
Beginning with version 8.3.0, Pillow can read (but not write) RGB,
RGBA, and YCbCr images with subsampled components. Pillow supports
JPEG 2000 raw codestreams (.j2k files), as well as boxed JPEG 2000 files
(.jp2 or .jpx files).

When loading, if you set the mode on the image prior to the
load() method being invoked, you can ask Pillow to
convert the image to either RGB or RGBA rather than choosing for
itself. It is also possible to set reduce to the number of resolutions to
discard (each one reduces the size of the resulting image by a factor of 2),
and layers to specify the number of quality layers to load.

Saving#

The save() method supports the following options:

	offset
	The image offset, as a tuple of integers, e.g. (16, 16)

	tile_offset
	The tile offset, again as a 2-tuple of integers.

	tile_size
	The tile size as a 2-tuple. If not specified, or if set to None, the
image will be saved without tiling.

	quality_mode
	Either "rates" or "dB" depending on the units you want to use to
specify image quality.

	quality_layers
	A sequence of numbers, each of which represents either an approximate size
reduction (if quality mode is "rates") or a signal to noise ratio value
in decibels. If not specified, defaults to a single layer of full quality.

	num_resolutions
	The number of different image resolutions to be stored (which corresponds
to the number of Discrete Wavelet Transform decompositions plus one).

	codeblock_size
	The code-block size as a 2-tuple. Minimum size is 4 x 4, maximum is 1024 x
1024, with the additional restriction that no code-block may have more
than 4096 coefficients (i.e. the product of the two numbers must be no
greater than 4096).

	precinct_size
	The precinct size as a 2-tuple. Must be a power of two along both axes,
and must be greater than the code-block size.

	irreversible
	If True, use the lossy discrete waveform transformation DWT 9-7.
Defaults to False, which uses the lossless DWT 5-3.

	mct
	If 1 then enable multiple component transformation when encoding,
otherwise use 0 for no component transformation (default). If MCT is
enabled and irreversible is True then the Irreversible Color
Transformation will be applied, otherwise encoding will use the
Reversible Color Transformation. MCT works best with a mode of
RGB and is only applicable when the image data has 3 components.

New in version 9.1.0.

	progression
	Controls the progression order; must be one of "LRCP", "RLCP",
"RPCL", "PCRL", "CPRL". The letters stand for Component,
Position, Resolution and Layer respectively and control the order of
encoding, the idea being that e.g. an image encoded using LRCP mode can
have its quality layers decoded as they arrive at the decoder, while one
encoded using RLCP mode will have increasing resolutions decoded as they
arrive, and so on.

	signed
	If true, then tell the encoder to save the image as signed.

New in version 9.4.0.

	cinema_mode
	Set the encoder to produce output compliant with the digital cinema
specifications. The options here are "no" (the default),
"cinema2k-24" for 24fps 2K, "cinema2k-48" for 48fps 2K, and
"cinema4k-24" for 24fps 4K. Note that for compliant 2K files,
at least one of your image dimensions must match 2048 x 1080, while
for compliant 4K files, at least one of the dimensions must match
4096 x 2160.

	no_jp2
	If True then don’t wrap the raw codestream in the JP2 file format when
saving, otherwise the extension of the filename will be used to determine
the format (default).

New in version 9.1.0.

	comment
	Adds a custom comment to the file, replacing the default
“Created by OpenJPEG version” comment.

New in version 9.5.0.

	plt
	If True and OpenJPEG 2.4.0 or later is available, then include a PLT
(packet length, tile-part header) marker in the produced file.
Defaults to False.

New in version 9.5.0.

Note

To enable JPEG 2000 support, you need to build and install the OpenJPEG
library, version 2.0.0 or higher, before building the Python Imaging
Library.

Windows users can install the OpenJPEG binaries available on the
OpenJPEG website, but must add them to their PATH in order to use Pillow (if
you fail to do this, you will get errors about not being able to load the
_imaging DLL).

MSP#

Pillow identifies and reads MSP files from Windows 1 and 2. The library writes
uncompressed (Windows 1) versions of this format.

PCX#

Pillow reads and writes PCX files containing 1, L, P, or RGB data.

PFM#

New in version 10.3.0.

Pillow reads and writes grayscale (Pf format) Portable FloatMap (PFM) files
containing F data.

Color (PF format) PFM files are not supported.

Opening#

The open() function sets the following
info properties:

	scale
	The absolute value of the number stored in the Scale Factor / Endianness line.

PNG#

Pillow identifies, reads, and writes PNG files containing 1, L, LA,
I, P, RGB or RGBA data. Interlaced files are supported as of
v1.1.7.

As of Pillow 6.0, EXIF data can be read from PNG images. However, unlike other
image formats, EXIF data is not guaranteed to be present in
info until load() has been
called.

By default Pillow doesn’t allow loading of truncated PNG files, set
ImageFile.LOAD_TRUNCATED_IMAGES to override this.

Opening#

The open() function sets the following
info properties, when appropriate:

	chromaticity
	The chromaticity points, as an 8 tuple of floats. (White Point
X, White Point Y, Red X, Red Y, Green X, Green
Y, Blue X, Blue Y)

	gamma
	Gamma, given as a floating point number.

	srgb
	The sRGB rendering intent as an integer.

	0 Perceptual

	1 Relative Colorimetric

	2 Saturation

	3 Absolute Colorimetric

	transparency
	For P images: Either the palette index for full transparent pixels,
or a byte string with alpha values for each palette entry.

For 1, L, I and RGB images, the color that represents
full transparent pixels in this image.

This key is omitted if the image is not a transparent palette image.

open also sets Image.text to a dictionary of the values of the
tEXt, zTXt, and iTXt chunks of the PNG image. Individual
compressed chunks are limited to a decompressed size of
PngImagePlugin.MAX_TEXT_CHUNK, by default 1MB, to prevent
decompression bombs. Additionally, the total size of all of the text
chunks is limited to PngImagePlugin.MAX_TEXT_MEMORY, defaulting to
64MB.

Saving#

The save() method supports the following options:

	optimize
	If present and true, instructs the PNG writer to make the output file as
small as possible. This includes extra processing in order to find optimal
encoder settings.

	transparency
	For P, 1, L, I, and RGB images, this option controls
what color from the image to mark as transparent.

For P images, this can be a either the palette index,
or a byte string with alpha values for each palette entry.

	dpi
	A tuple of two numbers corresponding to the desired dpi in each direction.

	pnginfo
	A PIL.PngImagePlugin.PngInfo instance containing chunks.

	compress_level
	ZLIB compression level, a number between 0 and 9: 1 gives best speed,
9 gives best compression, 0 gives no compression at all. Default is 6.
When optimize option is True compress_level has no effect
(it is set to 9 regardless of a value passed).

	icc_profile
	The ICC Profile to include in the saved file.

	exif
	The exif data to include in the saved file.

New in version 6.0.0.

	bits (experimental)
	For P images, this option controls how many bits to store. If omitted,
the PNG writer uses 8 bits (256 colors).

	dictionary (experimental)
	Set the ZLIB encoder dictionary.

Note

To enable PNG support, you need to build and install the ZLIB compression
library before building the Python Imaging Library. See the
installation documentation for details.

APNG sequences#

The PNG loader includes limited support for reading and writing Animated Portable
Network Graphics (APNG) files.
When an APNG file is loaded, get_format_mimetype()
will return "image/apng". The value of the is_animated
property will be True when the n_frames property is
greater than 1. For APNG files, the n_frames property depends on both the animation
frame count as well as the presence or absence of a default image. See the
default_image property documentation below for more details.
The seek() and tell() methods
are supported.

im.seek() raises an EOFError if you try to seek after the last frame.

These info properties will be set for APNG frames,
where applicable:

	default_image
	Specifies whether or not this APNG file contains a separate default image,
which is not a part of the actual APNG animation.

When an APNG file contains a default image, the initially loaded image (i.e.
the result of seek(0)) will be the default image.
To account for the presence of the default image, the
n_frames property will be set to frame_count + 1,
where frame_count is the actual APNG animation frame count.
To load the first APNG animation frame, seek(1) must be called.

	True - The APNG contains default image, which is not an animation frame.

	False - The APNG does not contain a default image. The n_frames property
will be set to the actual APNG animation frame count.
The initially loaded image (i.e. seek(0)) will be the first APNG animation
frame.

	loop
	The number of times to loop this APNG, 0 indicates infinite looping.

	duration
	The time to display this APNG frame (in milliseconds).

Note

The APNG loader returns images the same size as the APNG file’s logical screen size.
The returned image contains the pixel data for a given frame, after applying
any APNG frame disposal and frame blend operations (i.e. it contains what a web
browser would render for this frame - the composite of all previous frames and this
frame).

Any APNG file containing sequence errors is treated as an invalid image. The APNG
loader will not attempt to repair and reorder files containing sequence errors.

Saving#

When calling save(), by default only a single frame PNG file
will be saved. To save an APNG file (including a single frame APNG), the save_all
parameter must be set to True. The following parameters can also be set:

	default_image
	Boolean value, specifying whether or not the base image is a default image.
If True, the base image will be used as the default image, and the first image
from the append_images sequence will be the first APNG animation frame.
If False, the base image will be used as the first APNG animation frame.
Defaults to False.

	append_images
	A list or tuple of images to append as additional frames. Each of the
images in the list can be single or multiframe images. The size of each frame
should match the size of the base image. Also note that if a frame’s mode does
not match that of the base image, the frame will be converted to the base image
mode.

	loop
	Integer number of times to loop this APNG, 0 indicates infinite looping.
Defaults to 0.

	duration
	Integer (or list or tuple of integers) length of time to display this APNG frame
(in milliseconds).
Defaults to 0.

	disposal
	An integer (or list or tuple of integers) specifying the APNG disposal
operation to be used for this frame before rendering the next frame.
Defaults to 0.

	0 (OP_NONE, default) -
No disposal is done on this frame before rendering the next frame.

	1 (PIL.PngImagePlugin.Disposal.OP_BACKGROUND) -
This frame’s modified region is cleared to fully transparent black before
rendering the next frame.

	2 (OP_PREVIOUS) -
This frame’s modified region is reverted to the previous frame’s contents before
rendering the next frame.

	blend
	An integer (or list or tuple of integers) specifying the APNG blend
operation to be used for this frame before rendering the next frame.
Defaults to 0.

	0 (OP_SOURCE) -
All color components of this frame, including alpha, overwrite the previous output
image contents.

	1 (OP_OVER) -
This frame should be alpha composited with the previous output image contents.

Note

The duration, disposal and blend parameters can be set to lists or tuples to
specify values for each individual frame in the animation. The length of the list or tuple
must be identical to the total number of actual frames in the APNG animation.
If the APNG contains a default image (i.e. default_image is set to True),
these list or tuple parameters should not include an entry for the default image.

PPM#

Pillow reads and writes PBM, PGM, PPM and PNM files containing 1, L, I or
RGB data.

“Raw” (P4 to P6) formats can be read, and are used when writing.

Since Pillow 9.2.0, “plain” (P1 to P3) formats can be read as well.

SGI#

Pillow reads and writes uncompressed L, RGB, and RGBA files.

SPIDER#

Pillow reads and writes SPIDER image files of 32-bit floating point data
(“F;32F”).

Pillow also reads SPIDER stack files containing sequences of SPIDER images. The
seek() and tell() methods are supported, and
random access is allowed.

Opening#

The open() method sets the following attributes:

	format
	Set to SPIDER

	istack
	Set to 1 if the file is an image stack, else 0.

	n_frames
	Set to the number of images in the stack.

A convenience method, convert2byte(),
is provided for converting floating point data to byte data (mode L):

im = Image.open("image001.spi").convert2byte()

Saving#

The extension of SPIDER files may be any 3 alphanumeric characters. Therefore
the output format must be specified explicitly:

im.save('newimage.spi', format='SPIDER')

For more information about the SPIDER image processing package, see
https://github.com/spider-em/SPIDER

TGA#

Pillow reads and writes TGA images containing L, LA, P,
RGB, and RGBA data. Pillow can read and write both uncompressed and
run-length encoded TGAs.

Saving#

The save() method can take the following keyword arguments:

	compression
	If set to “tga_rle”, the file will be run-length encoded.

New in version 5.3.0.

	id_section
	The identification field.

New in version 5.3.0.

	orientation
	If present and a positive number, the first pixel is for the top left corner,
rather than the bottom left corner.

New in version 5.3.0.

TIFF#

Pillow reads and writes TIFF files. It can read both striped and tiled
images, pixel and plane interleaved multi-band images. If you have
libtiff and its headers installed, Pillow can read and write many kinds
of compressed TIFF files. If not, Pillow will only read and write
uncompressed files.

Note

Beginning in version 5.0.0, Pillow requires libtiff to read or
write compressed files. Prior to that release, Pillow had buggy
support for reading Packbits, LZW and JPEG compressed TIFFs
without using libtiff.

Opening#

The open() method sets the following
info properties:

	compression
	Compression mode.

New in version 2.0.0.

	dpi
	Image resolution as an (xdpi, ydpi) tuple, where applicable. You can use
the tag attribute to get more
detailed information about the image resolution.

New in version 1.1.5.

	resolution
	Image resolution as an (xres, yres) tuple, where applicable. This is a
measurement in whichever unit is specified by the file.

New in version 1.1.5.

The tag_v2 attribute contains a
dictionary of TIFF metadata. The keys are numerical indexes from
TiffTags.TAGS_V2. Values are strings or numbers for single
items, multiple values are returned in a tuple of values. Rational
numbers are returned as a IFDRational
object.

New in version 3.0.0.

For compatibility with legacy code, the
tag attribute contains a dictionary
of decoded TIFF fields as returned prior to version 3.0.0. Values are
returned as either strings or tuples of numeric values. Rational
numbers are returned as a tuple of (numerator, denominator).

Deprecated since version 3.0.0.

Reading Multi-frame TIFF Images#

The TIFF loader supports the seek() and
tell() methods, taking and returning frame numbers
within the image file. You can combine these methods to seek to the next frame
(im.seek(im.tell() + 1)). Frames are numbered from 0 to im.n_frames - 1,
and can be accessed in any order.

im.seek() raises an EOFError if you try to seek after the
last frame.

Saving#

The save() method can take the following keyword arguments:

	save_all
	If true, Pillow will save all frames of the image to a multiframe tiff document.

New in version 3.4.0.

	append_images
	A list of images to append as additional frames. Each of the
images in the list can be single or multiframe images. Note however, that for
correct results, all the appended images should have the same
encoderinfo and encoderconfig properties.

New in version 4.2.0.

	tiffinfo
	A ImageFileDirectory_v2 object or dict
object containing tiff tags and values. The TIFF field type is
autodetected for Numeric and string values, any other types
require using an ImageFileDirectory_v2
object and setting the type in
tagtype with
the appropriate numerical value from
TiffTags.TYPES.

New in version 2.3.0.

Metadata values that are of the rational type should be passed in
using a IFDRational object.

New in version 3.1.0.

For compatibility with legacy code, a
ImageFileDirectory_v1 object may
be passed in this field. However, this is deprecated.

New in version 5.4.0.

Previous versions only supported some tags when writing using
libtiff. The supported list is found in
TiffTags.LIBTIFF_CORE.

New in version 6.1.0.

Added support for signed types (e.g. TIFF_SIGNED_LONG) and multiple values.
Multiple values for a single tag must be to
ImageFileDirectory_v2 as a tuple and
require a matching type in
tagtype tagtype.

	exif
	Alternate keyword to “tiffinfo”, for consistency with other formats.

New in version 8.4.0.

	compression
	A string containing the desired compression method for the
file. (valid only with libtiff installed) Valid compression
methods are: None, "group3", "group4", "jpeg", "lzma",
"packbits", "tiff_adobe_deflate", "tiff_ccitt", "tiff_lzw",
"tiff_raw_16", "tiff_sgilog", "tiff_sgilog24", "tiff_thunderscan",
"webp", "zstd"

	quality
	The image quality for JPEG compression, on a scale from 0 (worst) to 100
(best). The default is 75.

New in version 6.1.0.

These arguments to set the tiff header fields are an alternative to
using the general tags available through tiffinfo.

description

software

date_time

artist

	copyright
	Strings

	icc_profile
	The ICC Profile to include in the saved file.

	resolution_unit
	An integer. 1 for no unit, 2 for inches and 3 for centimeters.

	resolution
	Either an integer or a float, used for both the x and y resolution.

	x_resolution
	Either an integer or a float.

	y_resolution
	Either an integer or a float.

	dpi
	A tuple of (x_resolution, y_resolution), with inches as the resolution
unit. For consistency with other image formats, the x and y resolutions
of the dpi will be rounded to the nearest integer.

WebP#

Pillow reads and writes WebP files. The specifics of Pillow’s capabilities with
this format are currently undocumented.

Saving#

The save() method supports the following options:

	lossless
	If present and true, instructs the WebP writer to use lossless compression.

	quality
	Integer, 0-100, Defaults to 80. For lossy, 0 gives the smallest
size and 100 the largest. For lossless, this parameter is the amount
of effort put into the compression: 0 is the fastest, but gives larger
files compared to the slowest, but best, 100.

	method
	Quality/speed trade-off (0=fast, 6=slower-better). Defaults to 4.

	exact
	If true, preserve the transparent RGB values. Otherwise, discard
invisible RGB values for better compression. Defaults to false.
Requires libwebp 0.5.0 or later.

	icc_profile
	The ICC Profile to include in the saved file. Only supported if
the system WebP library was built with webpmux support.

	exif
	The exif data to include in the saved file. Only supported if
the system WebP library was built with webpmux support.

	xmp
	The XMP data to include in the saved file. Only supported if
the system WebP library was built with webpmux support.

Saving sequences#

Note

Support for animated WebP files will only be enabled if the system WebP
library is v0.5.0 or later. You can check webp animation support at
runtime by calling features.check("webp_anim").

When calling save() to write a WebP file, by default
only the first frame of a multiframe image will be saved. If the save_all
argument is present and true, then all frames will be saved, and the following
options will also be available.

	append_images
	A list of images to append as additional frames. Each of the
images in the list can be single or multiframe images.

	duration
	The display duration of each frame, in milliseconds. Pass a single
integer for a constant duration, or a list or tuple to set the
duration for each frame separately.

	loop
	Number of times to repeat the animation. Defaults to [0 = infinite].

	background
	Background color of the canvas, as an RGBA tuple with values in
the range of (0-255).

	minimize_size
	If true, minimize the output size (slow). Implicitly disables
key-frame insertion.

	kmin, kmax
	Minimum and maximum distance between consecutive key frames in
the output. The library may insert some key frames as needed
to satisfy this criteria. Note that these conditions should
hold: kmax > kmin and kmin >= kmax / 2 + 1. Also, if kmax <= 0,
then key-frame insertion is disabled; and if kmax == 1, then all
frames will be key-frames (kmin value does not matter for these
special cases).

	allow_mixed
	If true, use mixed compression mode; the encoder heuristically
chooses between lossy and lossless for each frame.

XBM#

Pillow reads and writes X bitmap files (mode 1).

Read-only formats#

CUR#

CUR is used to store cursors on Windows. The CUR decoder reads the largest
available cursor. Animated cursors are not supported.

DCX#

DCX is a container file format for PCX files, defined by Intel. The DCX format
is commonly used in fax applications. The DCX decoder can read files containing
1, L, P, or RGB data.

When the file is opened, only the first image is read. You can use
seek() or ImageSequence to read other images.

FITS#

New in version 9.1.0.

Pillow identifies and reads FITS files, commonly used for astronomy.

FLI, FLC#

Pillow reads Autodesk FLI and FLC animations.

The open() method sets the following
info properties:

	duration
	The delay (in milliseconds) between each frame.

FPX#

Pillow reads Kodak FlashPix files. In the current version, only the highest
resolution image is read from the file, and the viewing transform is not taken
into account.

To enable FPX support, you must install olefile.

Note

To enable full FlashPix support, you need to build and install the IJG JPEG
library before building the Python Imaging Library. See the distribution
README for details.

FTEX#

New in version 3.2.0.

The FTEX decoder reads textures used for 3D objects in
Independence War 2: Edge Of Chaos. The plugin reads a single texture
per file, in the compressed and uncompressed formats.

GBR#

The GBR decoder reads GIMP brush files, version 1 and 2.

Opening#

The open() method sets the following
info properties:

	comment
	The brush name.

	spacing
	The spacing between the brushes, in pixels. Version 2 only.

GD#

Pillow reads uncompressed GD2 files. Note that you must use
PIL.GdImageFile.open() to read such a file.

Opening#

The open() method sets the following
info properties:

	transparency
	Transparency color index. This key is omitted if the image is not
transparent.

IMT#

Pillow reads Image Tools images containing L data.

IPTC/NAA#

Pillow provides limited read support for IPTC/NAA newsphoto files.

MCIDAS#

Pillow identifies and reads 8-bit McIdas area files.

MIC#

Pillow identifies and reads Microsoft Image Composer (MIC) files. When opened,
the first sprite in the file is loaded. You can use seek() and
tell() to read other sprites from the file.

Note that there may be an embedded gamma of 2.2 in MIC files.

To enable MIC support, you must install olefile.

MPO#

Pillow identifies and reads Multi Picture Object (MPO) files, loading the primary
image when first opened. The seek() and tell()
methods may be used to read other pictures from the file. The pictures are
zero-indexed and random access is supported.

Saving#

When calling save() to write an MPO file, by default
only the first frame of a multiframe image will be saved. If the save_all
argument is present and true, then all frames will be saved, and the following
option will also be available.

	append_images
	A list of images to append as additional pictures. Each of the
images in the list can be single or multiframe images.

New in version 9.3.0.

PCD#

Pillow reads PhotoCD files containing RGB data. This only reads the 768x512
resolution image from the file. Higher resolutions are encoded in a proprietary
encoding.

PIXAR#

Pillow provides limited support for PIXAR raster files. The library can
identify and read “dumped” RGB files.

The format code is PIXAR.

PSD#

Pillow identifies and reads PSD files written by Adobe Photoshop 2.5 and 3.0.

QOI#

New in version 9.5.0.

Pillow identifies and reads images in Quite OK Image format.

SUN#

Pillow identifies and reads Sun raster files.

WAL#

New in version 1.1.4.

Pillow reads Quake2 WAL texture files.

Note that this file format cannot be automatically identified, so you must use
the open function in the WalImageFile module to read files in
this format.

By default, a Quake2 standard palette is attached to the texture. To override
the palette, use the PIL.Image.Image.putpalette() method.

WMF, EMF#

Pillow can identify WMF and EMF files.

On Windows, it can read WMF and EMF files. By default, it will load the image
at 72 dpi. To load it at another resolution:

from PIL import Image

with Image.open("drawing.wmf") as im:
 im.load(dpi=144)

To add other read or write support, use
PIL.WmfImagePlugin.register_handler() to register a WMF and EMF
handler.

from PIL import Image
from PIL import WmfImagePlugin

class WmfHandler:
 def open(self, im):
 ...

 def load(self, im):
 ...
 return image

 def save(self, im, fp, filename):
 ...

wmf_handler = WmfHandler()

WmfImagePlugin.register_handler(wmf_handler)

im = Image.open("sample.wmf")

XPM#

Pillow reads X pixmap files (mode P) with 256 colors or less.

Opening#

The open() method sets the following
info properties:

	transparency
	Transparency color index. This key is omitted if the image is not
transparent.

Write-only formats#

PALM#

Pillow provides write-only support for PALM pixmap files.

The format code is Palm, the extension is .palm.

PDF#

Pillow can write PDF (Acrobat) images. Such images are written as binary PDF 1.4
files. Different encoding methods are used, depending on the image mode.

	1 mode images are saved using TIFF encoding, or JPEG encoding if libtiff support is
unavailable

	L, RGB and CMYK mode images use JPEG encoding

	P mode images use HEX encoding

	LA and RGBA mode images use JPEG2000 encoding

Saving#

The save() method can take the following keyword arguments:

	save_all
	If a multiframe image is used, by default, only the first image will be saved.
To save all frames, each frame to a separate page of the PDF, the save_all
parameter must be present and set to True.

New in version 3.0.0.

	append_images
	A list of PIL.Image.Image objects to append as additional pages. Each
of the images in the list can be single or multiframe images. The save_all
parameter must be present and set to True in conjunction with
append_images.

New in version 4.2.0.

	append
	Set to True to append pages to an existing PDF file. If the file doesn’t
exist, an OSError will be raised.

New in version 5.1.0.

	resolution
	Image resolution in DPI. This, together with the number of pixels in the
image, will determine the physical dimensions of the page that will be
saved in the PDF.

	dpi
	A tuple of (x_resolution, y_resolution), with inches as the resolution
unit. If both the resolution parameter and the dpi parameter are
present, resolution will be ignored.

	title
	The document’s title. If not appending to an existing PDF file, this will
default to the filename.

New in version 5.1.0.

	author
	The name of the person who created the document.

New in version 5.1.0.

	subject
	The subject of the document.

New in version 5.1.0.

	keywords
	Keywords associated with the document.

New in version 5.1.0.

	creator
	If the document was converted to PDF from another format, the name of the
conforming product that created the original document from which it was
converted.

New in version 5.1.0.

	producer
	If the document was converted to PDF from another format, the name of the
conforming product that converted it to PDF.

New in version 5.1.0.

	creationDate
	The creation date of the document. If not appending to an existing PDF
file, this will default to the current time.

New in version 5.3.0.

	modDate
	The modification date of the document. If not appending to an existing PDF
file, this will default to the current time.

New in version 5.3.0.

XV Thumbnails#

Pillow can read XV thumbnail files.

Identify-only formats#

BUFR#

New in version 1.1.3.

Pillow provides a stub driver for BUFR files.

To add read or write support to your application, use
PIL.BufrStubImagePlugin.register_handler().

GRIB#

New in version 1.1.5.

Pillow provides a stub driver for GRIB files.

The driver requires the file to start with a GRIB header. If you have files
with embedded GRIB data, or files with multiple GRIB fields, your application
has to seek to the header before passing the file handle to Pillow.

To add read or write support to your application, use
PIL.GribStubImagePlugin.register_handler().

HDF5#

New in version 1.1.5.

Pillow provides a stub driver for HDF5 files.

To add read or write support to your application, use
PIL.Hdf5StubImagePlugin.register_handler().

MPEG#

Pillow identifies MPEG files.

 Next

 Text anchors

 Previous

 Appendices

 Copyright © 1995-2011 Fredrik Lundh, 2010-2024 Jeffrey A. Clark (Alex) and contributors

 Made with Sphinx and @pradyunsg's

 Furo

 On this page

 	Image file formats	Fully supported formats	BLP	Saving

	BMP	Opening

	DDS
	DIB
	EPS	Loading

	GIF	Opening
	Reading sequences
	Saving
	Reading local images

	ICNS	Saving

	ICO	Saving

	IM
	JPEG	Opening
	Saving

	JPEG 2000	Saving

	MSP
	PCX
	PFM	Opening

	PNG	Opening
	Saving
	APNG sequences
	Saving

	PPM
	SGI
	SPIDER	Opening
	Saving

	TGA	Saving

	TIFF	Opening
	Reading Multi-frame TIFF Images
	Saving

	WebP	Saving
	Saving sequences

	XBM

	Read-only formats	CUR
	DCX
	FITS
	FLI, FLC
	FPX
	FTEX
	GBR	Opening

	GD	Opening

	IMT
	IPTC/NAA
	MCIDAS
	MIC
	MPO	Saving

	PCD
	PIXAR
	PSD
	QOI
	SUN
	WAL
	WMF, EMF
	XPM	Opening

	Write-only formats	PALM
	PDF	Saving

	XV Thumbnails

	Identify-only formats	BUFR
	GRIB
	HDF5
	MPEG

